Lecture 34

Andrei Antonenko

May 5, 2003

1 Functions of the operators

Let A be a linear operator. If $f(t)$ is a polynomial,

 $f(t) = a_m t^m + a_{m-1} t^{m-1} + \cdots + a_1 t + a_0$

then we can define $f(A)$ as

$$
f(\mathcal{A}) = a_m \mathcal{A}^m + a_{m-1} \mathcal{A}^{m-1} + \cdots + a_1 \mathcal{A} + a_0 \mathcal{I}.
$$

Since the space of linear operators is finite-dimensional (we are considering only finitedimensional vector spaces here), then there is only a finite number of linearly independent powers of A. Thus, there exists polynomial $f(t)$, such that $f(A) = 0$. Such polynomials are called annihilating polynomials. The annihilating polynomials of minimal degree are called **minimal polynomials** of the operator A. We will denote minimal polynomials as $m_A(t)$.

Example 1.1. *The minimal polynomial of the zero operator is*

$$
m_0(t)=t.
$$

Example 1.2. *The minimal polynomial of the identity operator* I *is*

$$
m_1(t)=t-1.
$$

Lemma 1.3. The minimal polynomial of the Jordan block of the size m with the eigenvalue λ *is equal to* $(t - \lambda)^m$ *.*

Proof. Let A be a linear operator, given by this Jordan block. Then $N = A - \lambda J$ is a nilpotent operator of the height *m*, i.e.

$$
(\mathcal{A} - \lambda \mathcal{I})^m = 0, \qquad (\mathcal{A} - \lambda \mathcal{I})^{m-1} \neq 0.
$$

Thus $(t - \lambda)^m$ is an annihilating polynomial, but none of the smaller powers of $(t - \lambda)$ is not an annihilating polynomial. Thus $(t - \lambda)^m$ is a minimal polynomial. \Box

Now, if the space *V* is decomposed into a direct sum of invariant subspaces of the operator A , then the minimal polynomial of A is equal to the least common multiple of the minimal polynomials of the restrictions of A to these subspaces.

Now, let's assume that A is a linear operator, and it's characteristic polynomial can be factored into linear terms. Let $\lambda_1, \lambda_2, \ldots, \lambda_s$ be all the roots of the characteristic polynomial. Then the following theorem is an immediate corollary of the previous remark and lemma:

Theorem 1.4. *The minimal polynomial of the operator* A *is equal to*

$$
m_{\mathcal{A}}(t) = \prod_{i=1}^{s} (t - \lambda_i)^{m_i},\tag{1}
$$

where m_i *is a maximal size of Jordan blocks with the eigenvalue* λ_i *in the Jordan canonical form of* A*.*

Example 1.5. *The minimal polynomial of the operator* A *with Jordan canonical form*

$$
J = \begin{pmatrix} 3 & 1 & 0 & & & \\ 0 & 3 & 1 & & & \\ 0 & 0 & 3 & & & \\ & & & 3 & 1 & & \\ & & & & 0 & 3 & \\ & & & & & 2 & 1 \\ & & & & & 0 & 2 \end{pmatrix}
$$

 $is (t-3)^3(t-2)^2$.

Corollary 1.6. *The Jordan canonical form of the operator is diagonal only if its minimal polynomial does not have roots of multiplicity more than 1.*

This theory allows us to solve some interesting problems.

Example 1.7. Let us describe all the linear operators A such that $A^3 = A^2$. It means that *t* ³ − *t* ² *is an annihilating polynomial of* A*, and thus the minimal polynomial of* A *divides* $t^3-t^2=t^2(t-1)$. By the previous theorem it happens only if the Jordan canonical form of the *operator has only following Jordan blocks:*

$$
\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \left(0\right), \quad \left(1\right).
$$

The Jordan canonical form can have any number of such blocks. Moreover all the matrices, satisfying the *given* condition can be described as $C^{-1}JC$, where C is an arbitrary invertible *matrix, and J is a Jordan canonical form described above.*

The immediate corollary of this theorem is the following fact:

Theorem 1.8 (Cayley-Hamilton theorem). $p_A(A) = 0$, *i.e.* the *characteristic polynomial of the operator* A *annihilates operator* A*.*

Example 1.9. For any 2×2 matrix $\int a b$ *c d* λ *we have* $\int a b$ *c d* \setminus^2 $-(a+d)$ $\int a \quad b$ *c d* \setminus + (*ad* − *bc*) $\begin{pmatrix} 1 & 0 \end{pmatrix}$ 0 1 λ = $\begin{pmatrix} 0 & 0 \end{pmatrix}$ 0 0 λ *.*